SEASONAL BREEDING
IN THE EASTERN QUOLL DASYURUS VIVERRINUS
(MARSUPIALIA : DASYURIDAE)

by

SALLY LEE BRYANT B. Sc. (Hons).

A thesis presented for the Degree of Doctor of Philosophy,
Department of Zoology, University of Tasmania,
Hobart, Tasmania, Australia.
Plate 1a: A black Eastern quoll, *Dasyurus viverrinus*.
6. Access to, and copying of, thesis

The thesis copy lodged in the University Library shall be made available by the University for consultation but, for a period of two years after the thesis is lodged, it shall not be made available for loan or photocopying without the written consent of the author and in accordance with the laws of copyright.

After a thesis has been examined, the following authority will apply. Please complete your request, and sign below.

(i) I agree/dein't agree that the thesis may be made available for loan.
(ii) I agree/dein't agree that the thesis may be made available for photocopying.
(iii) I note that my consent is required only to cover the two-year period following approval of my thesis for the award of my degree. After this, access to the Library copy will be subject only to any general restrictions laid down in Library regulations.

Signed: [Signature] Date: 30-09-86

Lodged in Morris Miller Central Library: 13/1/198[152-8]. From which date the two years embargo will apply.

SMED 12/86
DECLARATION

This thesis represents my own work and to the best of my knowledge contains no material published or written by another person except where specifically indicated.

Sally L Bryant
ABSTRACT

The Eastern quoll, *Dasyurus viverrinus*, is one of the larger members of the family Dasyuridae and is found only in Tasmania. The quoll has a short breeding period with mating occupying two to three weeks of every year. Males display seasonal cycles of body weight and testes size. Both parameters are maximal prior to breeding then decline during and after mating.

LH and testosterone concentrations fluctuate at basal levels for much of the year. A gradual rise in LH and testosterone occurs in April, two to three months before breeding. This probably functions to initiate spermatogenesis and to prepare the gonads and accessory glands for reproduction. Male quoll produce a peak in LH (mean 13.9 ng per ml) and testosterone (mean 5.0 ng per ml) during the mating period. This peak coincides with maximum number of animals in the area and is associated with an increase in activity and mobility of males at this time. The highest testosterone level occurs just prior to mating and declines during copulation. By the time the young are born, approximately 19 days after copulation, most males have basal levels of hormones.

Juvenile quoll increase in weight with age and have comparatively high levels of LH and testosterone when entering the population after weaning. These levels may be associated with the processes of maturation and also with agonistic behaviour encountered during dispersal.

LH, progesterone and prolactin secretion in the female quoll conform to the patterns shown by other marsupials. LH and progesterone levels are highest near the time of oestrus and ovulation while prolactin concentration increases throughout the lactation period. The endocrine cycles and pouch development of pregnant and non-pregnant females appear to be similar.

Experimental evidence suggests that photoperiod is the likely proximate cue regulating the breeding cycle of the male quoll. Males exposed to a long daylength increase in weight and have lower LH concentrations compared to control animals. Testosterone secretion and testes size appear unaffected by a change in photoperiod and may require either a longer exposure time or additional factors to influence these cycles.
Males in captivity generally have lower LH and testosterone levels compared to males in the wild. The hormonal profiles of captive male quoll are related to the degree of physical contact with the female. When males are housed with females, LH and testosterone levels are significantly higher than when males are housed near, or isolated from females. A cue from the female may be the stimulus initiating a peak in androgens in the male and therefore females may be responsible for the synchrony of the breeding cycle.

Cortisol levels are significantly lower in captive animals when physical contact is prevented. There is no evidence of an androgen dependent decrease in plasma CBG during breeding nor is there any increase in free cortisol associated with a decrease in MCBC. The breeding season did not appear to be a period of high stress nor was it characterised by major changes in plasma protein, albumin or triglyceride levels. This is consistent with the Eastern quoll being one of the long lived members of the Dasyuridae.

This project proposes that the seasonal breeding activity in the male quoll is broadly regulated by photoperiod. However, the androgen rise prior to mating is triggered by additional cues, mainly from the female. The synchrony of this rise is directly related to interspecific male aggression probably involving physical interaction. High androgen levels occur just before mating, enabling males to establish their dominance and position in the social hierarchy before pairing with females. This reproductive pattern enables the Eastern quoll to intensify its reproductive effort and the relatively short, sharp rise in androgens and free cortisol does not impose immediate constraints on the life expectancy of the animal. The role of the male throughout the breeding cycle therefore contributes much to the life history classification of this species.
ACKNOWLEDGMENTS

I am grateful to a number of people for their support and encouragement throughout this project.

My supervisor Dr. Randy Rose for his direction, criticism and friendship over many years in the zoology department. Thanks Randy.

Property owners Ken Rowe of Cradoc and Wally and Kathleen Alexander, 'Gum Flat', Ringarooma, for allowing me to trap quolls in truly beautiful places.

Department of Lands, Parks & Wildlife for their cooperation with permits and special transfer of animals.

To Lyn Hinds and Hugh Tyndale-Biscoe for making the facilities available at the CSIRO, Rangelands and for showing me every kindness and encouragement during my stay in Canberra.

To Terry Fletcher for his gift of iodinated LH and his friendship. And the INGRAM Trust for donating funds enabling me to complete the assay work.

Adrian Bradley for performing the corticosteroid assays and for his valuable discussions since joining this zoology department.

Eric Colquhoun and Roy Swain for their time and guidance with assay techniques and Ian McDonald, Bob Gemmell and Dan Irby for their helpful telephone advice with procedures.

Jim Kiss and Wayne Melrose for access to the facilities at the Public Health Department and Haematology Department, Royal Hobart Hospital.

Pitts Poultry for their endless supply of chickens and Rob Watkins of Chemistry, for his endless distillation of solvents.

To all the academic and technical staff particularly Barry Rumbold and Kit Williams who between them seem to know, have and supply everything.

My fellow students especially Dom, Rosie, Gwen and in particular David Pemberton, for their friendship and inspiration.

To my parents and extended Bryant and Alexander families who have always given me encouragement and support.

To Ian, Debbie and Madeleine Woodward with whom I shared a special part of this project.

Finally, thankyou to my husband Graeme and to Tim, who have waited patiently and wondered if life changes after a PhD. Yes and No!
CONTENTS

DECLARATION i
ABSTRACT ii
ACKNOWLEDGMENTS iv

CHAPTER 1: INTRODUCTION
 1.1 Reproductive Physiology of the Male Marsupial 1
 1.1.1 Endocrine Systems 2
 1.2 Seasonal Breeding 5
 1.3 Factors Affecting Seasonal Breeding 7
 1.3.1 Photoperiod 8
 1.3.2 Social Factors 10
 1.3.3 Stress Factors 11
 1.4 General Description of the Eastern Quoll 14
 1.5 Aims of the study 18

CHAPTER 2: GENERAL METHODS
 2.1 Field Work 19
 2.1.1 Site Descriptions 19
 2.1.2 Trapping 20
 2.2 Captive Colony 20
 2.2.1 Enclosure Design and Housing 20
 2.2.2 Diet 21
 2.3 General Methods 22
 2.3.1 Blood Sampling 22
 2.3.2 Identification and Body Measurements 22
 2.3.3 Detection of Oestrus 22
 2.3.4 Veterinary Care and Anaesthetics 23
 2.3.5 Statistics 23

CHAPTER 3: RADIOIMMUNOASSAY TECHNIQUES AND VALIDATIONS
 3.1 Introduction 24
 3.2 RIA for Testosterone 25
 3.2.1 Introduction 25
 3.2.2 Materials and Methods 26
 3.2.2.1 Radioiodinated Testosterone 26
 3.2.2.2 Antisera 26
 3.2.2.3 Testosterone Standards 26
 3.2.2.4 Steroid Assay Buffer 27
 3.2.2.5 Charcoal 27
 3.2.2.6 Stripped (steroid free) Plasma 27
 3.2.2.7 Internal Standard (Quality Control) 27
 3.2.2.8 Extraction Solvent 28
 3.2.2.9 Glassware and Test Tubes 28
 3.2.3 Procedure 28
 3.2.4 Validations 29
 3.2.4.1 The Need for Extraction 29
 3.2.4.2 Effect of Plasma on the Standard Curve and Recovery 30
 3.2.4.3 Type and Volume of Solvent 31
3.2.4.4 Extraction Efficiency 31
3.2.4.5 Reproducibility and Precision 33
3.2.4.6 Dose Response 34
3.2.4.7 Sensitivity 34
3.2.5 Standard Curve 34

3.3 RIA for Luteinising Hormone (LH) 35
3.3.1 Introduction 35
3.3.2 Materials and Methods 36
3.3.2.1 Radioiodinated LH 36
3.3.2.2 First and Second Antibody 36
3.3.2.3 LH Standards 36
3.3.2.4 Assay Buffers 36
3.3.2.5 Assay Tubes 36
3.3.3 Procedure 37
3.3.4 Validations 37
3.3.4.1 Dose Response Curves 37
3.3.4.2 Recovery 38
3.3.4.3 Pituitary Extracts 38
3.3.4.4 Assay Sensitivity and Variance 38
3.3.5 Standard Curve 39

3.4 RIA for Total Cortisol 39
3.4.1 Introduction 39
3.4.2 Materials and Methods 40
3.4.2.1 Tritiated Cortisol 40
3.4.2.2 Antisera 40
3.4.2.3 Cortisol Standard 40
3.4.2.4 Assay Buffer and Charcoal 41
3.4.2.5 Scintillation Fluid 41
3.4.3 Procedure 41
3.4.4 Validations 41
3.4.4.1 The Need for Extraction 41
3.4.4.2 Extraction Efficiency 42
3.4.4.3 Effect of Plasma on the Standard Curve and Recovery 42
3.4.4.4 Dose Response 42
3.4.4.5 Sensitivity and Accuracy 42
3.4.5 Standard Curve 43

3.5 RIA for Progesterone 43
3.5.1 Introduction 43
3.5.2 Materials and Methods 43
3.5.3 Standard Curve 43

3.6 RIA for Prolactin 44
3.6.1 Introduction 44
3.6.2 Materials and Methods 44
3.6.3 Standard Curve 44

CHAPTER 4: SEASONAL CYCLES IN THE WILD
4.1 Introduction 45
4.2 Materials and Methods 47
4.2.1 Population Classification 47
4.2.2 Identification of Age Classes 48
4.3 Results 49
4.3.1 Sequence of Reproductive Events 49
4.3.2 Population Structure 50
4.3.3 Movement of Animals 51
4.3.4 Males 51
 4.3.4.1 Weight 51
 4.3.4.2 Scrotal Size 52
 4.3.4.3 LH 53
 4.3.4.4 Testosterone 54
 4.3.4.5 Profiles of Resident Male Quoll 55
 4.3.4.6 Synchrony of Male Cycles 55
4.3.7 Females 56
 4.3.7.1 Weight 56
 4.3.7.2 Pouch Development 56
 4.3.7.3 Reproductive Success and Synchrony of Birth 57
 4.3.7.4 LH 59
 4.3.7.5 Progesterone 59
 4.3.7.6 Prolactin 60
 4.3.7.7 Synchrony of Resident Female Quoll 60
4.3.8 Periodicity of Male and Female Cycles 61
4.3.9 Longevity 61
4.4 Discussion 61
 4.4.1 Population Events 61
 4.4.2 Male Body Cycles 63
 4.4.2.1 Adult Males 65
 4.4.2.2 First Year Males 65
 4.4.3 Male Endocrine Cycles 65
 4.4.3.1 Adult Males 69
 4.4.3.2 First Year Males 69
 4.4.4 Female Cycles 69
 4.4.5 Sex-Specific Roles 73

CHAPTER 5: PHOTOPERIOD
5.1 Introduction 75
5.2 Materials and Methods 77
 5.2.1 Photoperiod and Control Animals 77
 5.2.2 Design of Experiment 77
 5.2.3 Housing and Lighting 78
5.3 Results 79
 5.3.1 Between Groups 80
 5.3.2 Within Groups 82
5.4 Discussion 83

CHAPTER 6: FACTORS INFLUENCING BREEDING IN CAPTIVITY
6.1 Introduction 90
6.2 LH - Testosterone Regulation 92
 6.2.1 Aim 92
 6.2.2 Procedure 92
 6.2.3 Results 92
 6.2.4 Discussion 93
6.3 Diurnal Cycles 95
 6.3.1 Aim 95
6.3.2 Procedure 95
6.3.3 Results 95
6.3.4 Discussion 96
6.4 Captive Breeding 98
6.4.1 Aim 98
6.4.2 Procedure 98
6.4.3 Results 98
6.4.3.1 Males 100
6.4.3.2 Females 101
6.4.4 Discussion 103
6.4.4.1 Males 103
6.4.4.2 Females 105
6.5 Males with Females 106
6.5.1 Aim 106
6.5.2 Procedure 106
6.5.3 Results 107
6.5.4 Discussion 109
6.6 One Male with One Female 110
6.6.1 Aim 110
6.6.2 Procedure 110
6.6.3 Results 110
6.6.4 Discussion 111
6.7 Males near Females 112
6.7.1 Aim 112
6.7.2 Procedure 112
6.7.3 Results 113
6.7.4 Discussion 113
6.8 Males Isolated from Females 115
6.8.1 Aim 115
6.8.2 Procedure 115
6.8.3 Results 116
6.8.3.1 Separated 116
6.8.3.2 Combined 116
6.8.4 Discussion 117
6.9 Comparative Results between groups 119
6.10 General Conclusions 120

CHAPTER 7: ADRENO-CORTICO FUNCTION & BLOOD PARAMETERS

7.1 Introduction 123
7.2 ACTH Stimulated Cortisol Levels 125
7.2.1 Aim 125
7.2.2 Materials and Methods 125
7.2.3 Results 126
7.2.4 Discussion 128
7.3 Bound and Free Levels of Total Cortisol 131
7.3.1 Aim 131
7.3.2 Materials and Methods 131
7.3.3 Results 131
7.3.3.1 Males in the Wild 131
7.3.3.2 Captive males with Females 132
7.3.3.3 Captive males near Females 132
7.3.3.4 Captive males isolated from Females 133